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The nonviscous, supersonic flow around a circular cone with a zero angle 
of incidence has been btudied by Taylor f11 and Maccoll c21. The flow 
around a cone with an angle of incidence has been examined by Stone [3- 
51, who sought the solution in the form of power series in a and limited 
himself to the terms 0(02). 

Ferri [S] showed that Stone’s solution is not valid in the vicinity 
of the coile surface. He introduced the concept of a vertical layer of a 
thickness O(a). adjacent to the cone surface, whose flow parameters, 
except for the pressure and the normal velocity component, can differ 
substantially from the values given by the Stone theory. On the basis of 
these notions, Ferri gave correction formulas for velocity components at 
the cone surface with an accuracy O(a). Recently, Wiflett [71 found the 
velocity components at the cone surface with an accuracy O(a’). He began 
with the assumption that the Stone theory gives the correct distribution 
of pressure at the cone surface and correctly determines the entropy 
jump during transition across a shock wave in the flow symmetry plane. 
!Tillett’ s assumptions, essentially, are proved by the fact that these 

values, calculated according to the Stone theory, correspond well to the 

experimental data. 

Below, we will establish the above assumptions of Ferri and Wilfett 

analytically. It will be shown that, outside of the vertical layer with 
a thickness O(a), the solution is represented by an expansion of Stone’s 
solution. Inside the vertical layer the solution is obtained with an 
accuracy O(a), which outside of this layer is transformed into the Stone 
solution; i.e. it will be an analytical extension of the Stone solution 
in the vertical layer. In this way a solution to the problem is obtained 
with an accuracy O(a) in the whole area between the cone surface aud the 
shock wave. The behavior of the lines of constant entropy in the solution 
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which corresponds to of [S]. 
It be shown the cone surface is special: on this surface the 
derivatives along the normal. of entropy S, radial u and circumferential 
W, comprising the velocities, become infinite (this must be taken into 
account in numerical methods). It will be established that the Stone 
theory gives w everywhere correctly (at least in the terms O(u)). 

It will be explained that, in the Stone theory, logarithmic singular- 
ities on the cone surface appear due to a break-off of series in cx repre- 

senting the solution, when terms O(ar’) are involved; when all terms with 

on (n means natural number) are considered, no such singularities are in 
evidence. 

1. Let us exanline the uniform, supersonic flow of gas around a 
circular one with a half-solution p at an angle of incidence in a spheri- 
cal system of coordinates F, 0, q~ with an axis coinciding with that of 
the cone (see figure). 

We desiamate by u, II, ID the velocity vector components of gas 
particles in a direction of growth corresponding 
the pressure and the density. The expression for 
has the form 

to F, 0, 9 and by P, P 
the specific entropy S 

Here c, is the specific heat capacity at a constant volume, y the 
adiabatic index and S, the initial value of S. Ye examine the problem 
within the framework of the theory of conic flow, where u, v, IU, p and p 
don not depend on F. In this case, continuity equations, quantities of 
movement and energies will be written in the form 

2pu sin 0 + (pv sin 0)0 + (pw)* = 0 

vu~+u,wcscfl-v2-wz=0 

vve+v,wcsce+p-lpe+uv-w~cote=O (1-l) 
vwe $ w,wcsce+p-~p,csce+w(u+vcote)=~ 

v (P / ~7)~ + 20 csc 0 (P / ~9~ = 0 

Indices 0 and 0 denote derivatives. Since the conic flow developed 
from a homogeneous current, the following !3ernoulli integral is valid 

(1.2) 

1Iere Vm is the maximum velocity of the homogeneous current. !3y using 
(1.2) we may eliminate p or p and obtain a system for the four functions 
sought. JIowever , it is convenient to introduce, as a thermodynamic 
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{unction, s = S[y(y - 1)cJ-1; we then obtain from (1.1) [61 a system of 
equations for U, v, w, s 

L, = (a” - v”) sin 6 ve - (w” - a2) w, - vw (sin 8u.70 + v,) - 
- (v” + w2 - 24 u sin fl + u2v sin 0 = 0 (1.3) 

L,=sinevue+wu,-sine(vB+wa)=O 

L3 = sin evse + WS, = 0 (a* = y(v,a-u*-v+g)) 

L, = sin evwe - a2s, - uu, -vv,+w(sineu+c0sev)=O 

I!ere n is the immediate velocity of sound. 

2. Stone [3-S] h s owed that the solution of the problem of a circular 
cone with an accuracy O(cr*) has the form 

u=u,+aU,coscp+aB(U,+U,cos2~) 

v=v,+aVlcos~+aaa(V,+V3cos2~) 

w = aW, sin cp + asW, sin 29 

PlPo= id- aP, cos cp + aa (Pz + P3 co9 29) 

~/~~=l+aR,coscp+a~(R,+R~cos2cp) 

(2.1) 

where uo, vo, . . . . p,, are flow parameters when a = 0; functions U,, U2, 

. ..) R, depend only on 0. Furthermore 173 

s=so+us,coscp+aZ(s,+sscos2~) (2.2) 

where 

Substituting (2.11, (2.2) in I,, = 0, (1.31, we obtain 

so( = 0, he = 0, sac WlQ 
= -'Se = aoosin 8 (2.4) 
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We will henceforth designate the value which functions possess when 
0 = 0 by a small “x” above the line: f(P) = fX. 

In the vicinity of point 8 = $ we have us = - 2uox(e - fi) + . . . . be- 

cause, from (2.4), we obtain in this vicinity 

s1 = -Ss=- 4h?tzB In@-p)+.... (2.5) 

Since the entropy in the flow must be a finite function, it is clear 
from (2.5) that the Stone theory is of no use in the vicinity of value 
0 = p. 

3. We will solve system (1.3) in the vicinity 8 = p and require that 
outside of this vicinity the solution will be transformed into the Stone 
solution. Having found the solution, we will make the assumptions which 
we have justified below. 

(1) The velocity components for the case of an inclined cone differ 
from those which obtain when a = 0 by the amount O(a). 

(2) ‘Ihe Stone theory correctly determines w with an accuracy O(a) 
everywhere. From these assumptions and from (2.1) it follows that, in 
the vicinity 8 = p, we may represent the component of velocity w in the 
form 

w=uWlrsinq3+O[&(e-_~~]+o(a) 

while from equation L, = 0 (1.3) we obtain 

(3.1) 

u = - 24” (0 - l-9 + 0 r(e - WI + 0 (4 (0 - l-3) (34 

(4-l) 

An evaluation of the influence of the discarded terms will be given 
below. ‘Ihe genera1 solution (4.1) has the form 
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S--o=f(z), z= y--?-z;; (e-p)*” (4.2) 

Since a ln(8 - F) =@(a In a) is an amount which is small when a is 

small, when 0 - 3 = G(a), we obtain for 2 an expansion to a power series 

LY 

z - 1+coscp @Aal”(e-p)= - 
1- cos cp 

1+CoS'P[1+2hcLln(e-~)+...] 
1-coscp (4.3) 

If the Stone theory is still valid when 0 - 8 = (?(a), then (44.2) must 

transform itself into a Stone solution when 8 - $ = G(a). Expanding the 

expressions of difference (4.2) for s - so into a series a w!len 9 - p = 

O(o), and taking into account (4.3) 

S-so=] ifcosq ( - cos cp ) +... 
equating the first term of this expansion to the first term of the re- 

presentation for s - s0 in the Stone solution (2.1), we obtain 

1 +xos rp t(r-) =USlCOScp, - coscp or f(2) = USl~~ (4.4) 

J_et us now find the terms with a* in an expansion s - s,, by powers a, 

when 9 - $ = G(a). From (4.2) to (4.a) we obtain 

s-so=as,cOS(P+u2 - ?j In (0 - /3) co9 291 f.. . (4.5) 

If we take into account Expression (4.1) for h, then it follows from 

(2.2) to (2.5) that (4.5) is identical with Fqjression (2.2). (0nly the 

first terms of functions in their expansion by C - p are employed in the 

calculation, since the following terms are determined by values which 

have been discarded in the derivation (4.1).) 

5. Jet us find u. let us represent u in the form u = u0 + ul. From 

% = 0, (1.3) and from our assumptions it follows that 

w= ulv + 0 [a (0 - ~$9 + 0 (4 (5.1) 

Substituting (5.1) in L, = 0, L, = 0, discarding small values, we ob- 
tain 

-sin p2uox(fl-p) %e + ( uozp sq + & UlV UlV = ) 

= sin j3 
( .,:f p sv -t- -&- UIV)l (5.2j 

- W2uo”(~-- P)Q + ( U,t& S, ++u~~)s~ = 0 (5.3) 
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Mu1tiPlYing (5.3) by a~x21n0x sin p, and (5.2) by csc p, and adding, 

we obtain 

It follows from this that, after the expression in parenthesis has 

been equated to zero 

Ul = - $ (s - so) + UJ (cp) 

where Q(v) is the arbitrary function of 'p. We will determine this func- 

tion from the condition that u is transformed into a Stone solution when 

0 - B =0(a). We will assume 

under which conditions 

xa 
z&l = u - z&o = 

a0 
- 7 (s - so - 

UO 
as1 cos ‘p) + aUIX cos cp (5.4) 

where s is given by the Formula (4'.2). 

Let us find the expansion u by powers a when 8 - p = O(a). Taking 

into account (4:5), we obtain from (5.4) 

u=uo+aUlxcoscp+aa 
[ 
Eif$z;j In (0-p)- 

WIXaoX% 
' - 

4uox4sin p 
In@-_) cos2q]+. . . (5.5) 

'Ibe same results are obtained from the Stone theory. (Here also we 

consider the first terms in the expansion of the functions by 8 - p.) 

And it indeed follows from Formula (12) of [41 using the designations 

we are assuming here, that 

(5.6) 

From Formulas (19), (38) and (39) of [31 it follows that 

( aox = r Pox W 
pox>.%= --RIX ) (5.7) 

rcr--1) 

(see (2.3), (2.4)). F rom (5.6), (5.7), taking into account that in the 

vicinity 0 = p 

we obtain 
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Comparing (5.5) with (2.1) and taking into account (5.81, we establish 
that these expressions coincide. 

6. bt us now find 2~. It follows from (5.11, (5.4) that 

Let us 
around an 

. u 
WE- s1Il cp sin i s s1+ bX) + 0 [a (0 - PPI -I- 0 (4 (64 

find Ulx. If we write the Bernoulli equation (1.2) for flow 
inclined cone and subtract from it the Bernoulli equation for 

a = 0, substituting into the result of the expansion (2.1) and equating 

to zero the coefficient for a, we obtain 

“ou,+%~i+~~ (C--R,)=0 (6.2) 

When 8 = p, it follows from (4.2) that 

u,x - ,“r; Rlxu--+plx 

Substituting Ulx, sI (2.3) in (6.1), we obtain 

aoX’PIX w = cc ugxr sin @ sin cp + 0 [a (0 - p)‘:‘] + 0 (a) (6.3) 

Lt us transform w, given by the Stone theory. Equation (17 > of c31, 
in terms of the designations we are using here, has the form 

From 
follows 

=oaPl Uo’Wl + (u* + uo’cot e) WI - - = rsme 0 

expansion u0 ’ = u. =- 2u,X(8 - p) . . . in vicinity 9 = p, it 
that 

WI = =oxpw 
7~0~ sin p + 0 I(@ - P)“l in vicinity l3= /3 

Consequently, (2.1) may be represented in the form 

aoXPPIX w = uruoXsin /3 sin cp + 0 [a (0 - p)“] + 0 (01) (6.4) 

Comparison of (6.3) and (6.4) establishes their identity. 

7. Analysis of the solution we have obtained establishes that the 
assumptions made above are justified and that the solution, consequently, 
is the analytical continuation of the Stone solution in a vertical layer 
with a thickness 0(a). From the results in paragraphs 4 and 5 the origin 
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of the logarithmic singularities in terms with a2 in expansions of u and 
p by powers a (see (2.1)) becomes clear. lhese singularities appear as a 
result of expansion into a power series in a of expressions of the type 
(e - pP. If we consider all terms a” (n designates a natural number) 
in such expansions, the logarithmic singularities disappear; i.e. the 
appearance of logarithmic singularities in the Stone theory is connected 
with the cutting-off of series expanded by powers a into terms contain- 
ing a2. 

8. Let us investigate the solution we have obtained for the case of 
the vertical layer. From (5.41, (4.2), (4.4) it follows that at the cone 
surface (0 = p) 

u = uox + a [ 
z?$L+(s$ + u1”) cos fP] + 0 04 

Substituting s 1 and U, in (2.11, we obtain 

N’hen 0 = 9, it follows from (6.3) that 

W 

x =a--- 
uo 

u$$&p sin cp + 0 (~2) (8.3) 

Formulas (8.21, (8.3) coincide with Formulas (461, (52) in [71. (Ihey 
contain also terms O(a2 1, which are also correct. 1 From Formulas (4.21, 
(4.41, (5.41, (6.3) it follows that, when 8 = $$ se, ue, tue become in- 
finite. 

9. let us study the behavior of lines of constant entropy s = const 
in the neighborhood of the cone surface. From Formulas (4.2), (4.4) we 
obtain 

s-ssg=cq (1 + co9 cp) (fl - pp + cos q - 1 

(1 + COB q) (e - f3y - cos q + 1 + o(a), h>O (9.1) 

When e = n also on the cone surface, 0 = p, s - so = - asl; when 

9 = 0, we have s - sa = asl; the other lines s = const converge in a 
point 8 = p, ‘p = 0, lvhere the Ferri peculiarity is observed, since the 
s = const lines, according to (9. l), have the form 

1 1 -- 

’ - fl = [ 2 ;ltkk) I *=Cp+..., k = =$ = const 

in the vicinity of point 8 = 2, 9 = 0. 

From (5.4) we ascertain that limits u are dissimilar as they apTroach 
point 0 = /3, 9 = 0 along the parabolas 
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Thus, the behavior of lines of constant entropy in the above solution 

corresponds to that described in Ferri "s [61 analysis. We should observe 
that the Stone theory is valid outside the layer with a thickness O(a) 

also in the vicinity of the Ferri singularity, since it follows from 

(9.1) that s - so =asl cos 9 + . . . . when 0 - i; = O(U) for all cases of 

T. 

10. In the Stone theory, the boundary condition at the cone surface 
is u = 0 (VI = Vz = V, = 0, 0 = f3). In the vicinity 0 = F, the solution 

can not be approximated on the basis of the final segment of a power 

series in a. For this reason, the boundary conditions mentioned above . 
must be substantiated. If we accept these conditions, v in the Stone 

theory may be represented in the form 

v - 00 = uvl’x (0 - PI cm rp + 0 [a2 (0 - p>1+ 0 [a (0 - p)] (vp= (gq=,) 

Hence 

v - vg = a21vl’x cos 4, + 0 (u2), 0-_9=la (1 =const) (10.1) 

Let us demonstrate that, when 0 - p = la, velocity component v in 

the vertical layer may be determined by Formula (10.1); in the same pro- 

cess we will substantiate the boundary conditions V, = V, = V3 = ‘3, when 
8 = p. \Ve will represent u, v in the vertical layer in the form LI = u,, + 

Ul’ 
v = v. + VI. From equation L, = 0, (1.3) it follows that 

VIII = 
wcp -7----2u1 

8133 p 
(10.2) 

In the right-hand part of (10.2) only those terms are left which, 

after integration by 0 and substitution by 0 - p = la, will be O(a'). 

Substituting in (10.2) Expressions (3.1), (5.4) for w, ul, taking into 

account (4.2), (4.4), integrating the result by 8, substituting 0 - I; = 

la and deriving the substitute of the integration variable according to 

the formula 9 - p = UT we obtain 

Vl = a21 ( WIX 2 ai_? 
TKjT-- -ii-s,-2u,Xj coscp + 

uo 
1 

+2-$&s 1 
(1 + co9 cp) a2hor+a - 1 + cos cp 

r o (1 + cos cp) cPvh= + 1 - cos ‘p 
dz (10.3) 

When a- 0, the integral in (10.3) tends toward 1 cos 9; (10.3) can 

thus be written in the form 
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ity 

v - v. = v1 = aal ( Z& - 2Ulx) cos cp + 0 (a2) (10.4) 

In order for (10.4) to coincide with (lO.l), we must fulfil the equal- 

V,‘” = -g- _ 2u1x 

which, when we have accounted for the fact that V, = II,‘, must be written 
in the form 

TJ,“+2u1--&=o, tJ=p 

Formulas (36), (39), (40), (41) of [31 indicate that this condition is 
in fact fulfilled, something which, indeed, did require demonstration. 

11. Let us demonstrate that the Stone theory correctly determines the 
pressure on the cone surface with an accuracy @(a*). From what we have 
said above, it follows that the Stone expansion represents the solution, 
when 6 - B = O(a). let us estimate the change in pressure which takes 
place during transition through the vertical layer. The third equation 
(1.1) and the solution in the vertical layer indicate that p,, may be re- 
presented in the form 

Pe = -pv(u + v0)+0(a2)= - pore (u. + vOI) + 0 P (6 - B)l + 0 (a”) = 

=p~+W(6-_)I +Wa2) 

After integrating,by 6, we discover that p - pO, during its transition 
through the vertical layer 6 - p = O(a), varies by amounts O(a3). 
(Willett [71 arrived at this conclusion, but his analysis has a defect, 
since in order to evaluate a term with “6, one must know the behavior of 
the solution in the vertical layer. ) On the other hand, p - pot as given 

by the Stone theory, also varies by amounts O(a3) during transition 
through the vertical layer. In actual fact 

UO 's=v o=u;=vl=po = po’= 0 when t3=8 

After differentiation by 6, (2.3), (2.4), (6.2) will now give P,’ = 

Rl ’ = 0, when 0 = p. 

Fe recall that in the Stone theory F,, -“*, P,, R, are limited, while 
R,, R, in the vicinity 6 = p have the form 
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Since P,’ = po’ = 0 when 0 = 3, then 

P-P0 = aPIp co8 cp + aa (Ps + Ps cos2 cp) p. 

varies by 0(a3) during transition through the vertical layer. ‘Ihe Stone 
theory determines p with an accuracy O(a*) when 8 - p = O(a); therefore, 
during transition through the vertical layer, the difference between p 

according to the Stone theory and the exact value can be only 0(a3). 

12. Since all of Willett’s [7] assumptions have been substantiated 
analytically, it may be said that his formulas correctly determine velo- 
city components at the cone surface with an accuracy 0(a2). 

In conclusion we observe that if a solution is sought in the form of 
infinite series in a, these series will, apparently, converge in all 
cases when 8 # p; however, unlike series for V, w and p, series for u 
and p are divergent in actual practice, since any finite segments of 
these series become infinite when 0 = p. 
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